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Abstract—The problem of community detection in a network
with features at its nodes takes into account both the graph
structure and node features. The goal is to find relatively
dense groups of interconnected entities sharing some features
in common. We apply the so-called data recovery approach to
the problem by combining the least-squares recovery criteria for
both, the graph structure and node features. In this way, we
obtain a new clustering criterion and a corresponding algorithm
for finding clusters one-by-one, so that the process can be
interpreted as that of detecting communities indeed. We show that
our proposed method is effective on real-world data, as well as on
synthetic data involving either only quantitative features or only
categorical attributes or both. In the cases at which attributes
are categorical, state-of-the-art algorithms are available. Our
algorithm appears competitive against them.

Index Terms—Attributed Network, Feature-Rich Network,
Cluster Analysis, Community Detection, Data Recovery, One by
One Clustering

I. INTRODUCTION: PREVIOUS WORK AND MOTIVATION

Community detection is a popular field of data science
with various applications ranging from sociology to biology
to computer science. Recently this concept was extended from
flat and weighted networks to networks with a feature space
associated with its nodes, these are referred to as attributed or
feature-rich networks [7]. A community is a group, or cluster,
of densely interconnected nodes that are similar in the feature
space too.

There have been published a number of papers proposing
various approaches to identifying communities in feature-rich
networks (see recent reviews in [7] and [4]). The reference
[4] classifies community detection methods according to that
stage at which the two data types, network and features, are
merged together. This may occur either before the beginning
of the procedure (early fusion), either within the procedure
(simultaneous fusion), or after that (late fusion).

We are interested in methods based on data modeling, which
should fall within the second group, related to the simultaneous
fusion stage. Early fusion and late fusion approaches must
be purely heuristic because they transform the observed data
instead of modeling them. Among the data modeling ap-
proaches, one may distinguish between theory-driven and data-

driven approaches. Theory-driven approaches involve a model
of the real-world phenomena under investigation leading to a
probabilistic distribution parameters of which can be recovered
from the data. Most interesting approaches in this group are
represented by methods in [21] and [17]. The former statisti-
cally models inter-relation between the network structure and
node attributes, the latter involves Bayesian inferences.

In contrast, data-driven approaches involve no world models
but rather focus on the data as is. According to this approach,
the data is considered as an array of numbers to be recovered in
the process of decoding a model that ”encodes” the data. Such
data analysis methods as K-means clustering and Principal
Component Analysis naturally fall within this approach, as
described in [14]. Specifically, our data-driven model assumes
a hidden partition of the node set in non-overlapping commu-
nities and parameters encoding the average within-community
link intensity and feature central points. To find this partition
and parameters, an encoding process should be run so that a
process of decoding reproduces the data as well as possible.
Such an approach is referred to as data recovery approach in
[14]; in the neural network domain, this approach is referred
to as an auto-encoder [18].

The quality of data recovery can be evaluated by the
summary square error, so that the least squares criterion may
be used. Because of the additive structure of the least squares
criterion, a greedy-wise strategy of extraction of clusters one-
by-one is applicable. This strategy has been applied already to
both only network, or entity-to-entity similarity, data and only
feature data. Applied to similarity data, it was first described
in English in [12] and experimentally validated in papers like
[13]. Applied to feature space data, it was experimentally
validated in [3] and [1]. Here we apply the same strategy
to our combined least-squares criterion, additively accounting
for both network links recovery and feature values recovery.
In contrast to other approaches, this one is applicable to mixed
scale data, and moreover, in the experiments being reported,
it needs no pre-specified number of clusters. Our experiments
show that this approach is valid and competitive against other
popular approaches.

The rest of the paper is organized as follows. We describe
our model and algorithm in Section II. In Section III, weIEEE/ACM ASONAM 2020, December 7-10, 2020
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describe the setting of our experiments. In Section IV, we
describe results of our experiments to validate our method and
compare it with competition. We draw conclusions in Section
(V).

II. A DATA RECOVERY MODEL

Let us consider a dataset represented by two matrices: a
symmetric N×N network adjacency matrix P = (pij), where
pij can be any reals, and by an N×V entity-to-feature matrix
Y = (yiv) with i ∈ I , I being an N -element entity set.

We assume that there is a partition S = {S1, S2, ..., SK} of
I in K non-overlapping communities, a.k.a. clusters, related
to this dataset as described below.

Denote k-th cluster binary membership vector by sk =
(sik), k = 1, 2, ...,K, so that its i-th component is equal to
unity for i ∈ Sk, and zero otherwise. The cluster is assigned
with a V -dimensional center vector ck = (ckv). Also, there is
a positive network intensity weight of k-th cluster denoted by
λk, to adjust the binary sik values to the measurement scale
of the network adjacency matrix P .

Equations (1) and (2) below:

yiv =

K∑
k=1

sikckv + fiv, i ∈ I, v ∈ V, (1)

pij =

K∑
k=1

λksiksjk + eij , i, j ∈ I. (2)

express our model. Here values eij and fiv are residuals that
should be as small as possible.

According to the least-squares principle, ”right” member-
ship vectors sk, community centers ck and intensity weights
λk are minimizers of the summary least-squares criterion:

F (λk, sk, ck) = ρ

K∑
k=1

∑
iv

(yiv − ckvsik)2

+ξ

K∑
k=1

∑
ij

(pij − λksiksjk)2
(3)

The factors ρ and ξ in Eqn. (3) are expert-driven constants
to balance the two sources of data.

On the first glance, criterion in Eqn. (3) differs from what
follows from Eqns. (2) and (1): the operation of summation
over k is outside of the parentheses in it, whereas these
equations require that to be within the parentheses. However,
the formulation in (3) is consistent with the models in (2)
and (1) because vectors sk (k = 1, 2, ...,K) correspond to a
partition and thus are mutually orthogonal: For any specific
i ∈ I , sik is zero for all k except one; that one k at which
i ∈ Sk. Therefore, each of the sums over k in Eqns. (2) and
(1) consists of just one item, so that the summation sign may
be applied outside of the parentheses indeed.

To use a one-by-one clustering strategy [12], [14] here,
let us denote an individual community by S; its center in
feature space, by c; and the corresponding intensity weight,

by λ (just removing the index, k, for convenience). The extent
of fit between the community and the dataset will be the
corresponding part of criterion in (3):

F (λ, cv, si) = ρ
∑
i,v

(yiv − cvsi)2 + ξ
∑
i,j

(pij − λsisj)2 (4)

The problem: given matrices P = (pij) and Y = (yiv), find
binary s, as well as real-valued λ and c = (cv), minimizing
criterion (4).

As is well known, and, in fact, easy to prove, the optimal
real-valued cv is equal to the within-S mean of feature v, and
the optimal intensity value λ is equal to the mean within-
cluster link value:

cv =

∑
i∈S yiv

|S|
; λ =

∑
i,j∈S pij

|S|2
(5)

Criterion (4) can be further reformulated as:

F (s) = ρ
∑
i,v

y2iv − 2ρ
∑
i,v

yivcvsi + ρ
∑
v

c2v
∑
i

s2i

+ξ
∑
i,j

p2ij − 2ξλ
∑
i,j

pijsisj + ξλ2
∑
i

s2i
∑
j

s2j
(6)

The items T (Y ) =
∑

i,v yiv
2 and T (P ) =

∑
ij p

2
i,j in

(6) express quadratic scatters of data matrices Y and P ,
respectively. Using them, Eqn. 6 can be reformulated as

F (s) = ρT (Y ) + ξT (P )−G(s) (7)

where

G(s) = 2ρ
∑
i,v

yivcvsi − ρ
∑
v

c2v
∑
i

s2i

+2ξλ
∑
i,j

pijsisj − ξλ2
∑
i

s2i
∑
j

s2j
(8)

Equation (7) shows that the combined data scatter, ρT (Y )+
ξT (P ) is decomposed in two complementary parts, one of
which, F (s), expresses the residual, that part of the data scatter
which is not taken into account by the model in Eqns. (1) and
(2), whereas the other part, G(s), expresses the contribution
of the model to the data scatter.

By putting the optimal values cv and λ from (5) into this
expression, we obtain a simpler expression for G(s)

G = ρ|S|
∑
v

c2v + ξλ
∑
ij

pijsisj (9)

Maximizing G in (9) is equivalent to minimizing criterion
F in 4 because of 7.

One can see that maximizing the first item in (9) requires
obtaining a numerous cluster (the greater the |S|, the better)
which is as far away from the space origin, 0, as possible
(the greater the squared distance from 0, |

∑
v c

2
v|, the better).

Usually the data are pre-processed so that the origin is shifted
to the center of gravity, or grand mean, the point whose
components are the averages of the corresponding features. In



such a case, the goal of putting the cluster as far away from 0
as possible, means that the cluster should be anomalous. The
second item in the criterion (9) is proportional to the sum of
within-cluster links multiplied by the average within-cluster
link λ. Maximizing criterion (9), thus, should produce a large
anomalous cluster of a high internal density.

We employ a greedy heuristic: starting from arbitrary sin-
gleton S = i, the seed, add entities one by one so that
the increment of G in (9) is maximized. After each adding,
recompute optimal cv and λ. Halt when the increment becomes
negative. After stopping, the last check is executed: Seed
Relevance Check: Remove the seed from the found cluster
S. If the removal increases the cluster contribution; this seed
is extracted from the cluster.

We refer to this algorithm as Feature-rich Network Addition
Clustering algorithm, FNAC. Consecutive application of the
algorithm FNAC to detect more than one community, forms
our community detection algorithm SEFNAC below.

SEFNAC: Sequential Extraction of Feature-rich Net-
work Addition Clusters

1. Initialization. Define J = I , the set of entities to which
FNAC applies at every iteration, and set cluster counter k = 1.

2. Define matrices YJ and PJ as parts of Y and P restricted
at J . Apply FNAC at J , denote the output cluster S as Sk,
its center c as ck, the intensity λ as λk and contribution G as
Gk.

3. Redefine J by removing all the elements of Sk from
it. Check whether thus obtained J is empty or not. If yes,
stop. Define the current k as K and output all the solutions
Sk, ck, λk, Gk, k = 1, 2, ...,K. If not, add 1 to k, and go to 2.

III. SETTING OF EXPERIMENTS FOR VALIDATION AND
COMPARISON OF SEFNAC ALGORITHM

To set a computational experiment, one should specify its
constituents:

1) The set of algorithms under comparison.
2) The set of datasets at which the algorithms are evaluated

and/or compared.
3) The set of criteria for assessment of the experimental

results.

A. Algorithms under comparison

We take two popular algorithms in the model-based ap-
proach, CESNA [21] and SIAN [17], which have been exten-
sively tested in computational experiments. The author-made
codes of the algorithms are publicly available in [11] and [15]
respectively. We also tested the algorithm PAICAN from [2] in
our experiments. The results of this algorithm, unfortunately,
were always less than satisfactory; therefore, we exclude the
algorithm PAICAN from this paper.

B. Datasets

We use both real world datasets and synthetic datasets.

1) Real world datasets: We take on five real-world data
sets listed in table I. Some of them involve both quantitative
and categorical features. The algorithms under comparison,
unlike the proposed algorithm SEFNAC, require that features
are to be categorical. Therefore, whenever a data set contains
a quantitative feature we convert that feature to a categorical
version.

Malaria data set [9]
The nodes are amino acid sequences containing six highly

variable regions (HVR) each. The edges are drawn between
sequences with similar HVRs number 6. In this data set, there
are two nominal attributes of nodes:

1) Cys labels derived from of a highly variable region
HVR6 (assumed ground truth);

2) Cys-PoLV labels derived from the sequences adjacent to
regions HVR 5 and 6.

Lawyers dataset [10], [20]
The Lawyers dataset comes from a network study of cor-

porate law partnership that was carried out in a Northeastern
US corporate law firm, referred to as SG & R, 1988-1991, in
New England. It is available for downloading at [20]. There
is a friendship network between lawyers in the study. The
features in this dataset are:

1) Status (partner, associate),
2) Gender (man, woman),
3) Office location (Boston, Hartford, Providence),
4) Years with the firm,
5) Age,
6) Practice (litigation, corporate),
7) Law school (Harvard or Yale, UCon., Other)
Most features are nominal. Two features, ”Years with the

firm” and ”Age”, are quantitative. Authors of the previous
studies converted them to the nominal format, accepted here
too. The categories of ”Years with the firm” are x <= 10,
10 < x < 20, and x >= 20; the categories of ”Age” are
x <= 40, 40 < x < 50, and x >= 50.

World-Trade dataset [19]
The World-Trade dataset contains data on trade between 80

countries in 1994. The link weights represent total imports by
row-countries from column-countries, in $ 1,000, for the class
of commodities designated as ’miscellaneous manufactures
of metal’ to represent high technology products or heavy
manufacture. The weights for imports with values less than 1%
of the country’s total imports are zeroed. The node attributes
are:

1) Continent (Africa, Asia, Europe, North America, Ocea-
nia, South America)

2) Structural World System Position (Core, Semi-
Periphery, Periphery),

3) Gross Domestic Product per capita in $ (GDP p/c)
We convert the GDP feature into a three-category nominal

feature according to the minima of its histogram. The cate-
gories are: ’Poor’ if GDP p/c is less than $ 4406.9; ’Mid-
Range’ if GDP is between $ 4406.9 and $ 21574.5; and
’Wealthy’ if GDP is greater than $ 21574.5.



TABLE I
REAL WORLD DATASETS UNDER CONSIDERATION. SYMBOLS N, E, AND F STAND FOR THE NUMBER OF NODES, THE NUMBER OF EDGES, AND THE

NUMBER OF NODE FEATURES, RESPECTIVELY.

Name Nodes Edges Features Ground Truth (Number of Communities)
Malaria HVR6 [9] 307 6526 6 Cys Labels (2)
Lawyers [20] 71 339 18 Derived out of office and status features (6)
World Trade [19] 80 1000 16 Derived out of continent and structural world system features (15)
Parliament [2] 451 11646 108 Political parties (7)
COSN [5] 46 552 16 Region (2)

Parliament dataset [2]
The nodes correspond to members of the French Parliament.

An edge is drawn if the corresponding MPs sign a bill together.
The features are the constituency of MPs and their political
party.

Consulting Organisational Social Network (COSN)
dataset [5]

Nodes in this network correspond to employees in a con-
sulting company. The (asymmetric) edges are formed in accor-
dance with their replies to this question: ”Please indicate how
often you have turned to this person for information or advice
on work-related topics in the past three months”. The answers
are coded by 0 (I Do Not Know This Person), 1 (Never), 2
(Seldom), 3 (Sometimes), 4 (Often), and 5 (Very Often). These
6 numerals are the weights of the corresponding edges. Nodes
in this network have the following attributes:

1) Organizational level (Research Assistant, Junior Consul-
tant, Senior Consultant, Managing Consultant, Partner),

2) Gender (Male, Female),
3) Region (Europe, USA),
4) Location (Boston, London, Paris, Rome, Madrid, Oslo,

Copenhagen).

Before applying SEFNAC, all attribute categories are con-
verted into 1/0 dummy variables which are considered quan-
titative.

2) Generating synthetic data sets: First of all, we specify
the number of nodes N , the number of features V , and the
number of communities, K, in a dataset to be generated. As
the number of parameters to control is rather high, we narrow
down the variation of our data generator by maintaining two
types of settings only, a small size network and a medium size
network. For a small size setting, we specify the values of the
three parameters as follows: N = 200, V = 5, and K = 5.
For the medium size, N = 1000, V = 10, and K = 15.

Generating networks
At given numbers of nodes, N , and communities K, car-

dinalities of communities are defined uniformly randomly, up
to a constraint that no community may have less than a pre-
specified number of nodes (in our experiments, this is set to
30, so that probabilistic approaches are applicable), and the
total number of nodes in all the communities sums to N .

Given the community sizes, we populate them with nodes,
that are specified just by indices. Then we specify two proba-
bility values, p and q. Every within-community edge is drawn
with the probability p, independently of other edges. Similarly,

any between- community edge is drawn independently with
the probability q.

Generating quantitative features To model quantitative
features, we apply the design proposed in [8]. Each cluster
is generated from a Gaussian distribution whose co-variance
matrix is diagonal with diagonal values uniformly random
in the range [0.05, 0.1] to specify the cluster’s spread. Each
component of the cluster center is generated uniformly random
from the range α[−1,+1], so that the real α controls the
cluster intermix: the smaller the α, the closer are cluster
centers to each other.

In addition to cluster intermix, we take into account the
possibility of presence of noise in data. We uniformly random
generate a noise feature from an interval defined by the
maximum and minimum values. In this way, we replicate 50%
of the original data with noise features.

Generating categorical features
To model categorical features, we randomly choose the

number of categories for each of them from the set {2, 3, ..., L}
where L = 10 for small-size networks and L = 15 for the
medium-size networks. Then, given the number of communi-
ties, K, and the numbers of entities, Nk for (k = 1, ...,K); the
cluster centers are generated randomly so that no two centers
may coincide at more than 50% of features.

Once a center of k-th cluster, ck = (ckv), is specified, Nk

entities of this cluster are generated as follows. Given a pre-
specified threshold of intermix, ε between 0 and 1, for every
pair (i, v), i = 1 : Nk; v = 1 : V , a uniformly random real
number r between 0 and 1 is generated. If r > ε, the entry
xiv is set to be equal to ckv; otherwise, xiv is taken randomly
from the set of categories specified for feature v .

Consequently, all entities in cluster k-th coincide with its
center, up to rare errors if ε is close to 1. The smaller the
epsilon, the more diverse, and thus intermixed, would be the
generated entities.

Generating mixed scale features
We divide the number of features in two approximately

equal parts, one to consist of quantitative features, the other,
of categorical features. Each part is filled in independently, as
described above.

C. Evaluation criteria

To evaluate the result of a community detection algorithm,
we compare the found partition with that generated by using
the customary Adjusted Rand Index (ARI) [6]. The closer
the value of ARI to unity, the better the match between the



partitions. If one of the partitions consists of just one part
containing all I , then ARI=0. Cases at which ARI is negative
may occur too; these happens rarely indeed, in weird cases
such as ’dual’ partitions [8].

IV. RESULTS OF COMPUTATIONAL EXPERIMENTS

The goal of our experiments is to test validity of the
SEFNAC algorithm over all types of feature-rich network
datasets under consideration. In the cases at which features
are categorical, the SEFNAC algorithm is to be compared with
the popular algorithms SIAN and CESNA.

A. Parameters of the generated datasets

We set network parameters, the probability of a within-
community edge, p, and that between communities, q, to take
either of two values each, p = 0.7, 0.9 and q = 0.3, 0.6. In
the cases at which all the features are categorical, we decrease
q-values to q = 0.2, 0.4, because all the three algorithms fail
at q = 0.6. Feature generation is controlled by an intermix
parameter, α at quantitative features, and ε at categorical
features. We take each of the intermix parameters to be either
0.7 or 0.9.

To set a more realistic design, we may explicitly insert 50%
features that are uniformly random in some datasets.

Therefore, generation of synthetic datasets is controlled by
specifying six two-valued and one three-valued parameters:
• feature scales: quantitative, categorical, mixed;
• data size: small, medium;
• presence of noise features: yes, no;
• the probability of a within-community edge p;
• the probability of a between-community edge q;
• cluster inter-mix α or ε.

Therefore, there are 192 combinations of these altogether.
At each setting, we generate 10 datasets, run a community
detection algorithm, and calculate the mean and the standard
deviation of ARI index at these 10 datasets.

The following two sections present our experimental results
for (a) testing validity of the SEFNAC algorithm at synthetic
data, and (b) comparing performance of SEFNAC and com-
petition.

B. Validity of SEFNAC

Table II presents the results of our experiments at synthetic
datasets with mixed scale features.

We can see that SEFNAC successfully recovers the numbers
of communities at q = 0.3 and mostly fails at q = 0.6
– because this corresponds to a counterintuitive situation at
which the probability of a link between separate communities
is greater than 0.5. Yet even in this case the partition is
recovered exactly when other parameters keep its structure
tight, as say at p = 0.9. This holds for both small size and
medium size cases. Insertion of noise features does reduce
the levels of ARI but not that much. The real reduction in
the numbers of recovered communities, 7-8 out of 15 ones
generated, occurs at the medium size datasets at really loose

data structures with p = 0.7 and q = 0.6, leading to significant
drops in the levels of ARI values.

The picture is much similar at the cases of quantitative only
and categorical only feature scales - we do not present them
to shorten the paper.

C. Comparing SEFNAC and competition

In this section, we compare the performance of SEFNAC
with that of CESNA [21], and SIAN [17]. It should be
reminded that SEFNAC determines the number of clusters
automatically, whereas both CESNA and SIAN need that as
part of the input.

Table III presents our results at synthetic datasets (with
categorical features only, as required by the competition) and
Table IV, at real world datasets.

One can see that at small sizes CESNA wins three times
(out of 8), and at all the other cases, including at medium
size datasets, SEFNAC wins. SIAN never wins in this table.
There is an impressive change in the performance of SIAN at
the medium-sized datasets: SIAN comprehensively fails on all
counts at medium sizes by producing NaN which we interpret
as a one-cluster solution.

We also experimented with a slightly different design for,
categorical feature generation. That different design sets an
entity to either coincide with its cluster center or to be entirely
random. At that design CESNA wins 7 times at the small size
datasets and SEFNAC wins at 7 medium size datasets.

We get somewhat different results at the real world datasets.
Here CESNA never wins; SEFNAC wins three times, and
SIAN, two times (see Table IV).

Here, we chose that data normalization method leading, on
average, to the larger ARI values. Specifically, we used z-
scoring for normalizing features in Lawyers data set, HVR data
set and COSN data set. The best results on World-Trade data
set and parliament data set are obtained with no normalization.
The network data in Lawyers and HVR are normalized with
applying the modularity transformation [16]. The network data
of COSN is normalized by shifting all the similarities to the
average link value [14].

V. CONCLUSION

This paper proposes a novel combined data recovery crite-
rion for the problem of detecting communities in a feature-
rich network. Our algorithm SEFNAC (Sequential Extraction
of Feature-Rich Network Addition Clusters) extracts clusters
one by one. This allows us to determine the number of clusters
automatically, whereas other algorithms need the number of
clusters pre-specified. Another feature of our approach is that
it is more or less universal regarding the scales of the data
available. On the other hand, SEFNAC results may depend on
data normalization.

We experimentally show that SEFNAC is competitive over
both synthetic and real-world data sets against two popular
state-of-the-art algorithms, CESNA [21] and SIAN [17].

There should be several possible directions for future work
over the data recovery approach accepted in this paper. First



TABLE II
PERFORMANCE OF SEFNAC ON SYNTHETIC NETWORKS COMBINING QUANTITATIVE AND CATEGORICAL FEATURES FOR TWO DIFFERENT SIZES: THE

AVERAGE ARI INDEX AND ITS STANDARD DEVIATION OVER 10 DIFFERENT DATA SETS.

p q α/ε Small-Size Networks 50% noisy feature Medium-size Networks 50% Noisy features
0.9, 0.3, 0.9 0.99(0.01) 5.00(0.00) 0.99(0.01) 5.00(0.00) 1.00(0.00) 15.00(0.00) 1.00(0.01) 15.00(0.00)
0.9, 0.3, 0.7 0.98(0.03) 5.00(0.00) 0.99(0.02) 5.00(0.00) 1.00(0.00) 15.00(0.00) 0.99(0.01) 15.00(0.00)
0.9, 0.6, 0.9 0.91(0.01) 4.60(0.50) 0.88(0.01) 4.50(0.67) 0.95(0.08) 14.00(1.26) 0.93(0.10) 13.70(1.67)
0.9, 0.6, 0.7 0.86(0.14) 4.80(0.60) 0.88(0.14) 4.80(0.39) 0.84(0.08) 12.10(1.22) 0.81(0.09) 11.80(1.47)
0.7, 0.3, 0.9 0.99(0.02) 5.00(0.00) 0.99(0.01) 5.00(0.00) 0.99(0.01) 14.90(0.30) 0.99(0.01) 14.90(0.30)
0.7, 0.3, 0.7 0.94(0.10) 4.90(0.30) 0.95(0.06) 4.90(0.30) 0.99(0.01) 14.80(0.40) 0.96(0.07) 14.30(1.19)
0.7, 0.6, 0.9 0.74(0.20) 3.80(0.87) 0.73(0.15) 4.20(0.87) 0.56(0.14) 7.80(1.78) 0.55(0.14) 8.10(1.70)
0.7, 0.6, 0.7 0.67(0.14) 4.30(1.10) 0.57(0.14) 3.90(0.54) 0.39(0.09) 7.10(1.51) 0.42(0.08) 7.40(0.66)

TABLE III
COMPARISON OF CESNA, SIAN AND SEFNAC AT SYNTHETIC DATA SETS WITH CATEGORICAL FEATURES. THE BEST RESULTS ARE HIGHLIGHTED

USING BOLD-FACE. THE AVERAGE ARI VALUE AND ITS STANDARD DEVIATION OVER 10 DIFFERENT DATA SETS IS REPORTED.

setting Small Size Networks Medium Size Networks
p q ε CESNA SIAN SEFNAC CESNA SIAN SEFNAC

0.9, 0.3, 0.9 1.00(0.00) 0.55(0.29) 0.99(0.01) 0.89(0.05) 0.00(0.00) 1.00(0.00)
0.9, 0.3, 0.7 0.95(0.10) 0.48(0.29) 0.97(0.02) 0.85(0.08) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.9 0.93(0.08) 0.32(0.25) 0.96(0.01) 0.63(0.06) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.7 0.90(0.06) 0.11(0.14) 0.75(0.12) 0.48(0.09) 0.00(0.00) 0.96(0.03)
0.7, 0.3, 0.9 0.97(0.08) 0.55(0.16) 0.98(0.02) 0.77(0.07) 0.03(0.08) 1.00(0.01)
0.7, 0.3, 0.7 0.89(0.14) 0.51(0.21) 0.87(0.07) 0.71(0.13) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.9 0.50(0.10) 0.05(0.09) 0.90(0.07) 0.06(0.02) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.7 0.20(0.08) 0.03(0.04) 0.60(0.09) 0.02(0.01) 0.00(0.00) 0.91(0.04)

TABLE IV
COMPARISON OF CESNA, SIAN AND SEFNAC ON REAL-WORLD DATA
SETS; AVERAGE VALUES OF ARI AND STANDARD DEVIATION (STD) ARE
PRESENTED OVER 10 RANDOM INITIALIZATION. THE BEST RESULTS ARE

SHOWN USING BOLD-FACE.

CESNA SIAN SEFNAC
HRV6 0.20(0.00) 0.39(0.29) 0.45(0.14)
Lawyers 0.28(0.00) 0.59(0.04) 0.63(0.06)
World Trade 0.23(0.00) 0.55(0.07) 0.23(0.03)
Parliament 0.25(0.00) 0.79(0.12) 0.28(0.01)
COSN 0.44(0.00) 0.43(0.05) 0.50(0.11)

of all, its extension to large datasets should be proposed and
validated. Then the possibility of trade-off between two con-
stituent data sources, network and fetures, which is explicitly
present in our criterion should be investigated. Yet another
direction for future work shoud be a systematic investigation
of the relative effect of different data standardization methods
on the results of our method.
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[11] J. Leskovec, and R. Sosič, SNAP: A General-Purpose Network Analysis
and Graph-Mining Library. ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8-1, pp 1, ACM, 2016. CESNA on Github:
https://github.com/snap-stanford/snap/tree/master/examples/cesna

[12] B. Mirkin, Additive clustering and qualitative factor analysis methods
for similarity matrices. Journal of Classification vol. 4, pp. 7-31, 1987.

[13] B. Mirkin, and S. Nascimento, Additive spectral method for fuzzy cluster
analysis of similarity data including community structure and affinity
matrices. Information Sciences, 183(1), pp.16-34, 2012.

[14] B. Mirkin, Clustering: A Data Recovery Approach. CRC Press (1st
Edition, 2005; 2d Edition, 2012).

[15] Nature Communications,
https://www.nature.com/articles/ncomms11863

[16] M.E. Newman, Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23), pp. 8577-8582,
2006.

[17] M.E. Newman, and A. Clauset, Structure and inference in annotated
networks. Nature Communications, 7, p.11863, 2016.

[18] A. Ng, Sparse autoencoder. CS294A Lecture notes 72.2011, pp. 1-19,
2011.

[19] W. De Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network
Analysis with Pajek. Cambridge: Cambridge University Press, Chapter
2, 2004.

[20] T. Snijders, The Siena webpage. https://www.stats.ox.ac.uk/ sni-
jders/siena/Lazega lawyers data.htm.

[21] J. Yang, J. McAuley, and J. Leskovec, Community detection in networks
with node attributes. In 2013 IEEE 13th International Conference on
Data Mining, pp. 1151-1156, IEEE, 2013.


